
September 2016	 FoxRockX� Page 5

Handling unknown data
The biggest issue to me with the previous example
and all of the other examples in my last article is the
need to actually list out the values in the field that
determines the result columns. It means that you
have to know what data to expect and more impor-
tantly, that query results may be wrong if there’s
data you didn’t expect.

Fortunately, there’s a solution, using dynamic
SQL. You can store a query in a string and then exe-
cute it; it’s similar to using the & macro operator
or the ExecScript() function in VFP. Full details on
dynamic SQL are beyond the scope of this article,
but you don’t have to know much to use it for piv-
oting without knowing the values of the field you
want to pivot on. I’ll cover it in the context of the
example above, seeing total sales by salesperson
for each year; the complete code is in Listing 2 and
included as SalesPersonAnnualSalesDynamic.SQL
in this month’s downloads.

You need two variables, one to hold the list of
values and one to hold the query you construct.
In the example, they’re called @years and @query.
Step one is to run a query to store the list of dis-
tinct values in the first variable. It takes advan-
tage of SQL’s ability to populate a variable via
a query. The QUOTENAME() function converts

More on PIVOT
You can use PIVOT even when you don’t know the list of possible values, and
you can unpivot in order to normalize unnormalized data.

Tamar E. Granor, Ph.D.

In my last article, I explored the
PIVOT keyword that lets you cre-
ate crosstabs in SQL Server using
a single query. This article looks
at how to use PIVOT even when
you don’t know the list of values
in the pivot column, and covers
the UNPIVOT keyword that lets
you undo a pivot (in some cases)
and, more broadly, normalize
data.
I’ll start with a quick review. A
crosstab is a result table or cursor
where the set of columns is based
on data values in the source. In
SQL Server, you create crosstabs
using the PIVOT keyword. You
need at least three columns to do
a pivot: one to specify the rows,
one to specify the columns, and
one that contains the data to be aggregated.

Listing 1 shows a simple example. It produces
one row for each salesperson and one column
for each year from 2011 to 2014. The data at the
intersection of the row and the column is the
total sales (in dollars) for that salesperson for that
year. Partial results are shown in Figure 1; the
code is included in this month’s downloads as
SalesPersonAnnualSalesCTE.SQL.

Listing 1. This simple example of PIVOT computes sales by
salesperson by year.
WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales
 ORDER BY SalesPersonID

My last article shows how to do more complex
pivots, including using multiple fields to specify
the rows, and doing more than one aggregation.

Figure 1. The query in Listing 1 produces this result, showing each salesperson’s annual
sales.

Page 6	 FoxRockX� September 2016

to character (actually varchar) and adds delimit-
ers to make sure the result can serve as an identi-
fier. In this example, @years is assigned the value
'[2011],[2012],[2013],[2014]’, that is, exactly the list
we’ve been hard-coding in the previous examples.

Step two is to build a string that contains the
query we want to execute. The SET command here
simply fills @query with the same query we’ve been
using, except that instead of hard-coding the list of
years, we plug in the computed value in @years.

Finally, we call the built-in stored procedure
sp_executesql to execute the query we’ve built. The
first parameter to sp_executesql is always the state-
ment to execute. It can accept additional parame-
ters to be used in executing that statement, but in
this case, we don’t need any.

Listing 2. When you don’t know the list of values for the col-
umn you want to pivot on, you can retrieve a list of values and
use dynamic SQL to do the actual pivot.
DECLARE @query AS NVARCHAR(max);
DECLARE @years AS NVARCHAR(max);

-- Get the list of years
WITH DistinctYear (nYear)
AS
(SELECT DISTINCT YEAR(OrderDate)
 FROM Sales.SalesOrderHeader)

SELECT @years = ISNULL(@years + ', ', '')
 + QUOTENAME(nYear)
 FROM DistinctYear
 ORDER BY nYear;

-- Build the query including the list of years
SET @query =
 'WITH SalesByYear
 AS
 (SELECT SalesPersonID,
 YEAR(OrderDate) AS SalesYear,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

 SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear IN (' + @years + '))
 AS TotalSales
 ORDER BY SalesPersonID';

-- Run the query
EXEC sp_executesql @query;

Not surprisingly, this example produces the
same results as the one where the years are hard-
coded; they’re shown in Figure 1.

The query that produces the list of years prob-
ably deserves a little more attention, since it does
something you can’t do with a single query in VFP.
First, as noted above, rather than storing its result
in some kind of table, it puts the result into a vari-
able (@years); that’s what SELECT @years = does.
The more interesting piece is that @years appears
on the right-hand side of the equals sign, as well.
So the result is built up one record at a time. For

the first record, @years is null, and ISNULL(@years
+ ', ', '') returns the empty string. After that, it
returns the string so far with a trailing comma and
space. For each record, we then add the bracketed
version of the year.

As noted in my last article, the one big advan-
tage of having to list each value in PIVOT’s IN
section is that you can limit the result to a specified
subset of the data. To do that when generating the
list of values dynamically, there has to be a rule you
can apply in the query that assembles the list of val-
ues. For example, if you’re only interested in sales
in 2013 and later, you can add a WHERE clause to
the CTE of the query that populates @years, as in
Listing 3. If you want to see sales for the last three
years, you could specify YEAR(GETDATE())-2
rather than 2013 in the WHERE clause.

Listing 3. You can limit the column list by filtering the query that
collects the list of values.
-- Get the list of years
WITH DistinctYear (nYear)
AS
(SELECT DISTINCT YEAR(OrderDate)
 FROM Sales.SalesOrderHeader
 WHERE YEAR(OrderDate) >= 2013)

SELECT @years = ISNULL(@years + ', ', '')
 + QUOTENAME(nYear)
 FROM DistinctYear
 ORDER BY nYear;

Undoing PIVOT
SQL Server lets you undo pivots through the
UNPIVOT keyword, though you can’t always get
back to the original data (because of the aggrega-
tion performed as part of the pivot process). The
syntax for UNPIVOT is quite similar to the syntax
for PIVOT; it’s shown in Listing 4.

Listing 4. The syntax for UNPIVOT is pretty much the same as
for PIVOT, except there’s no aggregation function involved.
SELECT <row identifier columns>,
 [<column identifier column>,]
 <column to extract>
FROM <source table>
UNPIVOT
(<column to extract>
 FOR [<generic name for group of columns>]
 IN (<list of columns to unpivot>)
) AS <alias>

For UNPIVOT, you generally list out the col-
umns you want. Depending on the data you’re
unpivoting, you may or may not want to turn the
column names into data. In addition, the columns
you want in the result can be listed in any order.

The key items are to provide a name for the col-
umn to contain the data you’re unpivoting (shown
as “<column to extract>” in the syntax diagram),
and to provide a list of the columns that contain
data following the IN keyword. The latter is the
same information you provide to PIVOT, but here

September 2016	 FoxRockX� Page 7

it’s the column names rather than the values in a
particular column. The item that follows the FOR
keyword is simply a name to let you refer to that
list as a group; that lets you include them as data
in the result. As you’ll see later in this article, it also
allows you to operate on those column names as
data.

Let’s start with a simple example that reverses
(sort of) the annual sales pivot. Assume that rather
than simply returning the result of the query in
Listing 1, we’ve stored it in a temporary table called
#SalesByYearCT. Listing 5 shows how to unpivot
that result and get one row per salesperson per
year; it’s included in this month’s downloads as
UnpivotSales.SQL. The query lists the three fields
we want in the result: the salesperson’s ID, the year,
and the total sales for that salesperson in that year.
Inside the UNPIVOT section, we first specify that
the data in the columns we’re unpivoting should go
into a column called AnnualSales. Then, we indi-
cate that those columns are the ones named [2011],
[2012], [2013] and [2014]. The names SalesYear
is assigned to that group of fields, and matches
up with the name in the field list, so that the year
appears in the result. The alias for the UNPIVOT
(SalesPersonYear) is required, but doesn’t actually
add anything.

Listing 5. The query sort of unpivots the result of the query in
Listing 1.
SELECT SalesPersonID, SalesYear, AnnualSales
 FROM #SalesByYearCT
 UNPIVOT (AnnualSales
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS SalesPersonYear;

Figure 2 shows partial results and explains
why I said this query “sort of” reverses the origi-
nal. The query in Listing 1 starts with the raw sales

data, one record per sales order. But the original
query aggregates those records. UNPIVOT has no
way to disaggregate that aggregated data.

Using UNPIVOT to normalize data
UNPIVOT is useful for normalizing data. It’s quite
common to find databases that are not normal-
ized, particularly tables that use multiple columns
for essentially the same data. UNPIVOT lets you
gather that data into a single column.

The AdventureWorks database doesn’t have
any such examples. So to demonstrate this use of
UNPIVOT, we’ll have to create our own example
data. (These examples are inspired by and adapted
from Aaron Bertrand’s article on UNPIVOT at
http://tinyurl.com/grlkfyf.)

One of the most common examples of multiple
columns rather than normalized data is the use of
separate fields for different phone numbers, that is,
having fields named Phone1, Phone2, etc., or Home,
Mobile and Work. Listing 6 creates and populates
a simplified table that uses the latter approach. (To
make it easy to see that the normalization code
works, the phone numbers here use a pattern. The
exchange for all home numbers is 555; for mobile
numbers, it’s 666; and for work numbers, it’s 777.
In addition, each number for an individual has the
same last four digits. None of this makes a differ-
ence in how the code works; it simply makes check-
ing the results easier.) Figure 3 shows the data in
the #Person table.

Listing 6. This code creates and populates a temporary table
that uses separate named fields for home, mobile and work
phone numbers.
CREATE TABLE #Person
(First varchar(15), Last varchar(20),
 Home varchar(10), Mobile varchar(10),
 Work varchar(10))
INSERT INTO #Person VALUES
 ('Jane', 'Smith',
 '5555551234', '5556661234', '5557771234'),
 ('Andrew', 'Jones',
 '5555557890', '5556667890', '5557777890'),
 ('Deborah', 'Cohen', NULL,
 '5556667474', '5557777474');

With the proliferation of phone numbers for
an individual, it makes much more sense to use
a separate table to contain all phone numbers
with one record per phone per person. The query
in Listing 7 extracts the data from the #Person

Figure 2. The unpivoted annual sales have one record per
salesperson per year.

Figure 3. This approach to storing phones is not normalized
and means the data structure has to change to accommodate
each new type of phone.

Page 8	 FoxRockX� September 2016

table in the desired format. The result, shown in
Figure 4, includes a column to indicate the type
of phone; it’s populated based on the column
names in the original. Note also that there’s no
home phone record for Deborah Cohen, since the
Home field was NULL. This month’s downloads
include NormalizePhones.SQL, which creates the
temporary #Person table and has the query to
normalize the data.

Listing 7. This query normalizes the phone data, using the
column names to indicate the type of phone.
SELECT First, Last, PhoneType, Phone
 FROM #Person
 UNPIVOT (Phone
 FOR PhoneType
 IN (Home, Mobile, Work)) AS Phones;

The PhoneType column in this result is optional.
If, for some reason, you don’t want to include it,
you can just leave it out of the field list, as in Listing
8. In this example, it’s hard to see why you’d want
to do that, but if the original columns were simply
Phone1, Phone2 and Phone3, it would make sense.

Listing 8. This version of the query normalizes the phone data
without including the phone type information from the column
name.
SELECT First, Last, Phone
 FROM #Person
 UNPIVOT (Phone
 FOR PhoneType
 IN (Home, Mobile, Work)) AS Phones;

Normalizing multiple columns
What if rather than a single set of columns that need
to be normalized, you have multiple related sets?
Again, telephone numbers provide a simple exam-
ple. Suppose that instead of having one column per
phone number, named with the phone type, you
have a pair of columns for each phone number, one
indicating the type and the second containing the
phone number. As long as the column names fol-
low a pattern, UNPIVOT lets you normalize with-
out losing any of the data.

Listing 9 creates and populates a different ver-
sion of the #Person table. In this version, there are
three pairs of columns, named Phonen and Pho-
nenType. Each holds one phone number, along
with its type, and a person can have up to three.
The data here is the same as in the previous version
of the table, except that I’ve consciously changed
the order of the phone numbers in one record. As
in the previous example, Deborah Cohen has no
home number. Figure 6 shows the table’s contents.

Listing 9. This version of the #Person table uses two columns
for each phone number, to specify the number and the type.
CREATE TABLE #Person
 (First varchar(15), Last varchar(20),
 Phone1 varchar(10), Phone1Type varchar(6),
 Phone2 varchar(10), Phone2Type varchar(6),
 Phone3 varchar(10), Phone3Type varchar(6));
INSERT INTO #Person VALUES
 ('Jane', 'Smith',
 '5555551234', 'Home',
 '5556661234', 'Mobile',
 '5557771234', 'Work'),
 ('Andrew', 'Jones',
 '5556667890', 'Mobile',
 '5557777890', 'Work',
 '5555557890', 'Home');
INSERT INTO #Person
 (First, Last, Phone1, Phone1Type,
 Phone2, Phone2Type) Values
 ('Deborah', 'Cohen',
 '5556667474', 'Mobile',
 '5557777474', 'Work');

Surprisingly, given that doing multiple pivots
requires separate queries (as discussed in my
last article), you can do multiple unpivots in a
single query. That’s what’s required to normalize
this data, as shown in Listing 10 (included as
NormalizePhoneAndType.SQL in this month’s
downloads); the result is shown in Figure 7.

Listing 10. You can unpivot multiple related fields in a single
query.
WITH AllPhones AS

Figure 4. The normalized phone data is much more flexible

Figure 5. You can normalize without including the name of
the column where the data originated.

Figure 6. In this version of the #Person table, each phone number has
separate columns for number and type.

September 2016	 FoxRockX� Page 9

(SELECT First, Last, Phone, PhoneType,
 RIGHT(Phones, 1) AS nPhone,
 SUBSTRING(PhoneTypes, 6, 1)
 AS nPhoneType
 FROM #Person
 UNPIVOT
 (Phone FOR Phones
 IN (Phone1, Phone2, Phone3))
 AS PhoneList
 UNPIVOT
 (PhoneType FOR PhoneTypes
 IN (Phone1Type, Phone2Type,
 Phone3Type))
 AS PhoneTypeList)

SELECT First, Last, Phone, PhoneType
 FROM AllPhones
 WHERE nPhone = nPhoneType;

The actual unpivots are done in a CTE. First, we
unpivot the phone number fields, specifying Phone
as the field to hold the data, Phones as the collec-
tive name for the existing fields and listing them as
Phone1, Phone2, and Phone3. The second unpivot
does the same thing for the phone types, indicat-
ing that the data goes into PhoneType, the collec-
tive name for the existing fields is PhoneTypes and
specifying the list of those fields as Phone1Type,
Phone2Type and Phone3Type.

However, the pair of UNPIVOT clauses oper-
ate like a cross-join (also known as a Cartesian
join); each item unpivoted from the first is joined
to each item unpivoted from the second. We need
a way to match up the corresponding numbers and
types. The two extra fields in the CTE give us what
we need to do that. They’re also the reason we can
only do this is there’s a pattern to the field names.
The first pulls out the digit from the phone number
field, while the second does the same for the phone
type field. Each of those expressions uses the collec-
tive name for the list of fields as the way to find the
name of the original field for that data item.

Figure 8 shows partial results from running
just the query in the CTE. For Jane Smith, with
three phone numbers, there are 9 records, one for
each match of each phone number with each phone
type. But the only valid records are those where
nPhone and nPhoneType match.

With that data avail-
able, the main query in
Listing 10 keeps only
those records for corre-
sponding phone num-
bers and phone types.

Unpivoting un-
known columns
It seems less likely to me
that you might need to
unpivot without know-
ing the column names,
but I guess there can
situations where data
comes in from multiple
sources with different
numbers of unnormal-
ized columns. Fortu-
nately, you can build
the list of columns for
the unpivot and use
dynamic SQL here, too.
As in the matched col-
umns example, doing
so depends on the rel-
evant column names
following a pattern.

Figure 7. Using a pair of UNPIVOTs and a little more
work, we can normalize a table involving multiple re-
lated fields.

Figure 8. The two UNPIVOTs in the CTE in Listing 10 do a cross-join of the unpivoted data. The ad-
ditional fields nPhone and nPhoneType help us see where each item originated, so that the main query
can filter out the mismatches.

Page 10	 FoxRockX� September 2016

The key to doing this is to use the system col-
umns table (that is, a system table named Columns
that contains information about the columns in the
database) to extract the relevant list. The columns
of interest in that table are Name, which contains
the field name, and Object_ID, which identifies
the table to which the field belongs. As with the
dynamic pivot, we need QUOTENAME() to wrap
the field names to ensure they’re valid. Listing 11
shows the code to create and run the query from
Listing 10; it’s included in this month’s downloads
as DynamicUnpivot.SQL. (This example is inspired
by and adapted from Aaron Bertrand’s article at
http://tinyurl.com/z464ll9.)

Listing 11. You can build the list of fields and use dynamic SQL
to unpivot when you’re not sure how many fields you have.
-- Use variables here. In production,
-- these might be parameters
DECLARE @table AS NVARCHAR(max) =
 N'tempdb..#Person';
DECLARE @phonenames AS NVARCHAR(max) =
 N'Phone[0-9]';
DECLARE @typenames AS NVARCHAR(max) =
 N'Phone[0-9]Type';

DECLARE @phonecols AS NVARCHAR(max);
DECLARE @typecols AS NVARCHAR(max);
DECLARE @query AS NVARCHAR(max);

SELECT @phonecols =
 ISNULL(@phonecols + ', ', '') +
 QUOTENAME(Name)
 FROM tempdb.sys.Columns
 WHERE Object_ID = OBJECT_ID(@table)
 AND Name LIKE @phonenames;

SELECT @typecols =
 ISNULL(@typecols + ', ', '') +
 QUOTENAME(Name)
 FROM tempdb.sys.columns
 WHERE object_id = OBJECT_ID(@table)
 AND name LIKE @typenames;

SET @query =
'WITH AllPhones AS
 (SELECT First, Last, Phone, PhoneType,
 RIGHT(Phones, 1) AS nPhone,
 SUBSTRING(PhoneTypes, 6, 1)
 AS nPhoneType
 FROM #Person
 UNPIVOT
 (Phone FOR Phones
 IN (' + @phonecols +')) AS PhoneList
 UNPIVOT
 (PhoneType FOR PhoneTypes
 IN (' + @typecols +'))
 AS PhoneTypeList)

SELECT First, Last, Phone, PhoneType
 FROM AllPhones
 WHERE nPhone = nPhoneType';

-- Run the query
EXEC sp_executesql @query;

First, we declare several variables that hold
information about the query we need to build.
As the comment says, in real code, these might be

parameters to a stored procedure. The first, @table,
identifies the table containing the data we want to
normalize. Because we’re working with a tempo-
rary table here, it needs the “tempdb..” prefix. The
next two, @phonenames and @typenames, specify
the pattern for the two sets of columns we’re inter-
ested in.

Next, we declare variables to hold the two lists
of columns and the query to be executed.

Then, two consecutive, quite similar queries
populate the @phonecols and @typecols variables
by extracting the list from the system Columns
table. (Here again, we specify tempdb because
we’re interested in the columns of a temporary
table. For a permanent table, you can omit that.)
The strategy for building each list is the same as in
the dynamic pivot example; start with a null string
and build it up. The OBJECT_ID() function looks
up the unique identifier for the table of interest, so
that we consider only fields from that table.

Next, we populate the @query variable with
the query of interest, plugging in the field names
from the two variables @phonecols and @typecols.

Finally, we call sp_executesql to run the query
we’ve built. Not surprisingly, in this case, we get
the same results as for the static query, shown in
Figure 7.

Summing up
You may not need to pivot or unpivot data every
day, but when you do, SQL Server gives you a
straightforward way to do so. The ability to use
such queries even when you don’t know all the
data or all the fields you’re interested in makes
this feature even more useful.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

